Tricks To Solve Number Problems
1. Face Value :
The face value of a digit in a numeral is its own value, at whatever place it may be.
Ex: in the numeral 6432, face value of 2 is 2, 3 is 3, 4 is 4 and 6 is 6.
2. Place Value :
Place value of unit digit =(unit digit) *1.
Place value of tens digit =(tens digit) *10.
Place value of hundreds digit =(hundreds digit) *100, etc.
Ex: in the numeral 70982,
Place value of 4= 4*1=4,
Place value of 9 =9*100=900.
3. Arithmetic Progression :
1. nth term = a+(n-1)d.
2. Sum of n terms = n/2[2a+(n_1)d].
3. Sum of n terms = n/2 (a+l), where l is the last term.
4. Series Formulae :
1. (1+2+3+..+n)= 1/2 n(n+1).
5. Power Cycle of Numbers :
Number Power Cycle
0. 0
1. 1
2. 2,4,8,6
3. 3,9,7,1
4. 4,6
5. 5
6. 6
7. 7,9,3,1
8. 8,4,2,6
9. 9,1
6. Basic Formulae :
- (a + b)(a - b) = (a2 - b2)
- (a + b)2 = (a2 + b2 + 2ab)
- (a - b)2 = (a2 + b2 - 2ab)
- (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
- (a3 + b3) = (a + b)(a2 - ab + b2)
- (a3 - b3) = (a - b)(a2 + ab + b2)
- (a3 + b3 + c3 - 3abc) = (a + b + c)(a2 + b2 + c2- ab - bc - ac)
- When a + b + c = 0, then a3 + b3 + c3 = 3abc.
- (a + b)(a - b) = (a2 - b2)
- (a + b)2 = (a2 + b2 + 2ab)
- (a - b)2 = (a2 + b2 - 2ab)
- (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
- (a3 + b3) = (a + b)(a2 - ab + b2)
- (a3 - b3) = (a - b)(a2 + ab + b2)
- (a3 + b3 + c3 - 3abc) = (a + b + c)(a2 + b2 + c2- ab - bc - ac)
- When a + b + c = 0, then a3 + b3 + c3 = 3abc.
No comments:
Post a Comment